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Motivation

Moore's Law for LLMs
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Source: ChatGPT in the Age of Generative Al and Large Language Models: A Concise Survey (2023)



Motivation: Scope of Pretraining

Some back-of-the-envelope math:
70B parameter LLM

x 10T tokens of training data

x 3 (1 forward pass, 2 backward pass)
=2.1*10%*FLOPs
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Motivation: Scope of Inference

Some more back-of-the-envelope math:
70B parameter LLM
x 16-bit precision
=140 GB streaming through device cache
Vocab size 128K
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Motivation

Nasty synergies between pretraining and inference costs:
* Synthetic data

* Reinforcement Learning from Human Feedback (RLHF)

* Policy Optimization (PPO, DPO, GRPO, etc)

* Multiple generations required for the last two!
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Takeaways

This is a talk about building platforms and codebases

LLM optimization: multifaceted and open-ended
* Parallel pipelines run at the speed of the slowest component
* Juggling many bottlenecks and many constraints

No one-size-fits-all solutions!
80/20 rule: a long tail of possible bottlenecks
Breadth over depth
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Takeaways

1. Familiarity with general concepts and possible pitfalls

2. Some useful tools

3. Comfortably think about, discuss, and operate LLMs at scale
4. Theright mindset / perspective for approaching the problem
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Who am |?

Researcher at IBM

3 years working on LLM training
PhD in Al and CV

Focus on ML under constraints

Fractal artist, jewelry designer
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Who am |?

Our project at IBM:
an open-source, cloud-native platform for
foundation model training, fine-tuning, and hosting

IBM Foundation
Model Stack

IBM Pretraining
Repo (fms-fsdp)
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Contents

» Storytelling —what it takes to optimize LLMs at scale
* Know where to start, if you want to do the same

* Background:
* User-level basic familiarity with PyTorch
e Familiarity with transformer architecture (attention heads, vocab layers, etc)
* Familiarity with basic training loop (forward/backward passes, causal LM)
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PART 2: The Basics of
LLM PreTraining at Scale
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Revisiting PyTorch: Tensor Basics

PyTorch is a math engine that automatically computes gradients
* Atomic object: tensor
* Linear memory register mapped to higher dimensional grids

* Many operations supported for tensors
* Algebra: add, subtract, multiply, exponent, log, etc.
* Matrix math: matmul, triu, diagonal embed, transpose, flip, etc.

* Dataops: reshape, typecast, transferto cpu/gpu, slice, concat, broadcast, etc.

Tensors/cubes
o I . ' Matrices/planes
Vectors/rows
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Revisiting PyTorch: Tensor Basics

# Perform actual attention operation
score = k_.unsqueeze(2).matmul(xg.transpose(-1,-2)).add(affinity.unsqueeze(2)) # b h r c 1

_ = score. logsumexpl{dim==-2) # b h r 1

out_ = score.transpose(-1,-2).softmax(dim=-1).to(dtype=xq.dtype).matmul{v_.unsqueeze(2)) # b h r 1 d
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Revisiting PyTorch: AutoGrad Basics

* (Most) supported ops implement a “backward” function

* Given inputs, outputs*, and gradient w.r.t. outputs,
calculate gradient w.r.t. inputs

dw dy dx
dL

wx=yY, L=f), —=X-)T,

Y
dL
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Revisiting PyTorch: AutoGrad Basics

(Most) supported ops implement a “backward” function

Given inputs, outputs*, and gradient w.r.t. outputs,
calculate gradient w.r.t. inputs

dA _dC. dB _dC
AB=C,  L=fO), r=BGp. =4

Composed ops dynamically forward

gofloo

create a computation graph

Graph computes gradients
via composed backward calls
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Source: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/



Revisiting PyTorch: Modules and Networks

* The other “atomic” object: modules

Contain parameters (persistent tensors)

Implement a forward function with tensor inputs/outputs

Implicit backward function stores gradients for parameters

Essentially wraps function
compositions into black boxes

Optimizers use stored gradient ° . o o °
O

forward

to update parameters

Blocks are composed into
layers and networks

SIG

backward

Source: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/



Revisiting PyTorch: Hooks

* Hooks: backend functions triggering before/after forward/backward

* PyTorch implements distributed training through hooks
* Coordination, synchronization, sharding, etc.

* From the programmer’s perspective, it’'s a model wrapper

# FSDP

model = FSDP(
model,
auto_wrap_policy=wrapping_policy,
mixed_precision=mixed_precision_policy,
sharding_strategy=sharding_strategy_policy,
use_orig_params=cfg.use_torch_compile,

device_id=torch.cuda.current_devicel(),

limit_all_gathers=True,

param_init_fn=param_init_fn, N (€]
METRICS
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Data Parallel

Problem: you have a model on 1 GPU, 3 unused GPUs, and you need to
do a forward/backward pass on a batch of data. The model stores too
many inputs to fiton 1 GPU. What do you do?

forward

Naive solution: split batch into 4,
run Y4 the data on each GPU, and

consolidate (sum) gradients back ° .o Log o °
to master GPU afterwards. °
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Source: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/



Data Parallel

Problems:
1. Several devices’ worth of traffic is \
all going through 1 GPU ‘ GPUO | demmmmmy | cPUO
2. Master processis handling multiple
workers, but has to deal with GIL,
so parallelism s limited
GPU O GPUO
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Distributed Data Parallel

Replicate model across
all ranks

* Assume modelisrelatively
small (<30B params)

* All-reduce gradients across
all ranks

* ldentical gradients ensure
that model replicas
update identically

e No extra communication
overhead (!)

Source: https://docs.pytorch.org/tutorials/beginner/ddp_series_theory.html

DataParallel

More overhead; model is replicated and
destroyed at each forward pass

Only supports single-node parallelism

Slower; uses multithreading on a single
process and runs into Global

Interpreter Lock (GIL) contention

DistributedDataParallel

Model is replicated only
once

Supports scaling to multiple
machines

Faster (no GIL contention)
because it uses
multiprocessing
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Distributed Data Parallel

Process 1

1 2 3 4

Process 4 Process 2

BEED

Process 3
N (€]

_ = METRICS

Source: https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/




Distributed Data Parallel

Process 1

Process 4 Process 2

123

Process 3

B B

Source: https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/
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Distributed Data Parallel

Process 1

Process 4 Process 2

Process 3

B B
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Distributed Data Parallel

Process 1 ﬂ
Process 4 5

Process 3 .

Source: https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/

Process 2 m

SIG

METRICS

©

N
D



Distributed Data Parallel

* DP overhead:

* DDP overhead:

X modelsize

X (R —1)ranks

X 2 (model forward + gradient backward)
= 2X(R — 1) total

X /R packet size

X (R —1) steps

X 2 (sum step + propagate step)
X R ranks

= 2X(R — 1) total
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Distributed Data Parallel

(a) Tree AllReduce (b) Round-robin AllReduce

Source: Sparse Allreduce: Efficient Scalable Communication for Power-Law Data (2013)

(c) Butterfly AllReduce
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Fully Sharded Data Parallel

 DDP assumes your entire model fits on each GPU X

* (and the gradient) +x

* (and the optimizer) +2x
* Limit foran A100 is

{Process1
~30B parameters E!

* We already split up the
gradient for Ring-AllReduce, \- ,
so do the model too!

Process 2 ﬂ l

O
Process 3 .
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Source: https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/



Fully Sharded Data Parallel

 DDP assumes your entire model fits on each GPU X
* (and the gradient) +x
* (and the optimizer) +2x
* Limit foran A100 is
Memory K=12
~30B parameters | gy, | Consumed | *733
* We already splitup the Baseline @+24K)+% | 12068
gradient for Ring-AllReduce, 2w+ 29+ 5% | 3148
so do the model too! SCIT ) IV
(and the optimizer)
Posegep : 1.9GB
* AK.A.“Zero”-DP
Parameters Gradients Optimizer States
SIG
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Source: ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (2019)



Fully Sharded Data Parallel

Every rank holds 1/n of each layer, and layers/gradients are gathered
and materialized on demand
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Fully Sharded Data Parallel

50% total increase in communication traffic over DDP (via Ring)

MUCH more frequent communication of smaller packets
* Tighter synchronization of devices
* Latency over throughput

e Can overlap (most) communication with computation from the
previous layer

If training on multiple nodes, latency can become a problem
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Hybrid Sharded Data Parallel

* FSDP within nodes, DDP between nodes




Hybrid Sharded Data Parallel

A good compromise

Memory footprint stays small
* X2 X/8is a lot of freed memory (DDP - HSDP)
* X/8 > X/64is only a few GB (HSDP - FSDP)

Improves communication costs by up to 3x in the best case

More complex rank management (but PyTorch makes this invisible)
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Sequence Parallel

* Forlong sequence lengths (>64k): shard sequence over devices

* For attention, stream keys/values
in chunks through devices
(e.g. ring-allreduce)

e Can still overlap comms
and compute

(b) Transmitting value embeddings among devices to calculate the output of
attention layers

Figure 2: Ring Self-Attention
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Source: Sequence Parallelism: Long Sequence Training from System Perspective (2021)



Model Parallel

Pass around the inputs, not the model
* Not actually that big a difference

* Activations and model weights scale together

Activations:

Model weights:

4096 (inputdim) 4096 (input dim)
X 4096 (output dim) X 4096 (sequence length)
X 2 (attn + mlp layer) X [64,512] (batch size)

X [4,8] (inner expansion)

No more overlapping comms and compute!




Tensor Parallel

Row-wise: every row (and row group) of matmul is independent
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Tensor Parallel '| _

Column-wise: compute partial sums and reduce later

N (€]
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Tensor Parallel

Transformer layers project
outward, perform some
element-wise or group-wise
transformation, then
project back...

...which is perfect for row-wise
then column-wise TP

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism (2019)

Z = Dropout(Y B)
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Expert Parallel

* Blow up MLP width by ~20x

* Partition into heads/experts MOE layer

* Route tokens to top-k experts
(on different devices)

G(X)na

* Manually balance

expert/device loads

Source: Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer (2017)

Gating
Network
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Expert Parallel

Model weights: Activations:
4096 (inputdim) 4096 (input dim)
X 2048 (expert dim) X 4096 (sequence length)
X 256 (n_experts) X [64,512] (batch size)
X 2 (in +out proj) + (2%6) (n_experts / top_k)

= 4B (weights) = [16M,134M] (activations)

SIG




Pipeline Parallel

* Parallelize over depth: shard layers over devices

« Communications schedule VERY non-homogenous

Source: Device Placement Optimization with Reinforcement Learning (2017)
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Pipeline Parallel

Naive implementation is very inefficient
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s/25-parallel_deep_lear

: https://www.cs.cmu.edu/~15418/lecture



Pipeline Parallel

Aggregating mini-batches shrinks, but doesn’t eliminate, bubbles

Pipeline flush:

All inputs use weights from last flush :
add gradients

Worker 2 ;\1 2 3 4 %\\\%%\nnnn

Worker 3 \\:\1 2 3 4 §\\nnnnnn
Worker 4 &\ | I | nnnnnnnn

B Forward Pass [ | Backward Pass Y dle

urce: https://www.cs.cmu.edu/~15418/lectures/25-parallel_deep_learning_model_pipeline_parallel.pdf




Pipeline Parallel

Device 1
Device 2
Device 3
Device 4

Device 1
Device 2
Device 3
Device 4
Time

Device 1
Device 2
Device 3
Device 4
Time

Lots of work on optimizing schedules

45678
345678
2345678
123456738

Forward Pass

910111213141516
910111213141516

Assign multiple stages
to each device

111H gii 1
HHS S 3012HEH34 8

111 1 1
111 1
qu.lzaE HHEHH

1

8

1
sille
1M
4f85
11108 1,1

Backward Pass

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism (2019)
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Device 1
Device 2
Device 3
Device 4

Device 5
Device 6

Pipeline Parallel

Lots of work on optimizing schedules

|:| Forward :l Backward |:| Backward for input D Backward for weights l:l Overlapped forward & Backward

Source: DeepSeek V3 Technical Report(2025)
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N-Dimensional Parallelism

* Data parallel (DDP, HSDP/FSDP, SP)
* Model parallel (TP/EP, PP)
* A safe bet-avoid scaling any one axis too far

* But good luck debugging it!

Data Parallelism Tensor Parallelism

Single GPU

BN EE O N

GPUO GPU1 GPU2 GPU3

GPUO GPU1 GPU2 GPU3

____________________________

Source: The Road to El Dorado (2000)
Source: https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/scaling/JAX/tensor_parallel_simple.html

Pipeline Parallelism

GPU 3
GPU 2
GPU1
GPUO
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Handling Data at Scale

>2TB datasets require careful handling...

...even before multiple-device parallelism gets involved
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>2TB datasets require careful handling...
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* Data parallel:
e Sharding/partitioning
(probably dynamic!)
* Fractional file ownership?
* How to handle shuffling?
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Handling Data at Scale

>2TB datasets require careful handling...

...even before multiple-device parallelism gets involved

* Data parallel:
e Sharding/partitioning
(probably dynamic!)
* Fractional file ownership?
* How to handle shuffling?

* Tensor parallel:

* Synchronized retrieval
across devices

e Shared-memory storage of
several TB

* Sequence parallel:

* Partitioning AND synchronization

* Pipeline parallel:

* Only particular devices
(top/bottom) need data

» Single-device storage of
several TB

* N-dim parallel:

* Have mercy
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Handling Data at Scale

File 1, Sample 1

File 1, Sample 2

File 1, Sample 3 .
File 2

File 1, Sample 4

MDSWriter 1 MDSWriter 2 MDSWriter K

\

shard.01.mds, Sample 1
shard.01.mds, Sample 2

shard.02.mds shard.03.mds o000 shard.xx.mds
shard.01.mds, Sample 3
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Source: https://docs.mosaicml.com/projects/streaming/en/stable/getting_started/main_concepts.html



Handling Data at Scale

Cloud Storage

Stream 1 Stream 2

N

Shard 1

StreamingDataset

Dataset information
« # Shards per stream

GPUL,  GPU2, L GPUZ, GPUS, LGPUG,

D—!
HHHHHHHH

(“GpPu Samples

CPU Dataloader
Worker 1
CPU DataLoader
Worker 2

Shard 2 Shard 3 Shard 4

Other needed information
« # Nodes

SIG
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Handling Data at Scale

Cloud Storage
Stream 1 Stream 2
- - N - - I n n H
index.json index.json
StreamingDataset
Dataset information Other needed information
Stream 1 Stream 2 —_— « # Shards per stream » # Nodes
index.json index.json « # Samples per shard + # GPUs per node
« Total dataset samples » # Workers per GPU
« Batch size per GPU
SIG
METRICS

Source: https://docs.mosaicml.com/projects/streaming/en/stable/getting_started/main_concepts.html



Handling Data at Scale

Total sample space

Node 1

GPU1 GPUZ GPU3, GPU4_ GPUS, GPUG . GPU7

POV«
——

split between
2 workers

GPU Samples

N IERNN
Worker 1

CPU Dataloader

Source: https://docs.mosaicml.com/projects/streaming/en/stable/getting_started/main_concepts.html
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Handling Data at Scale

’ Cloud Storage

Stream 1 Stream 2

Shard 1 Shard 3 Shard 1 Shard 2

3

DataLoader for GPU 2 DataLoader for GPU k
y N s y N/
Dataloader der
Worker 1 Worker 1 ]

DataLoader o DataLoader
Worker 2 Worker 2

Shard

Source: https://docs.mosaicml.com/projects/streaming/en/stable/getting_started/main_concepts.html

Shard 4
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Handling Data at Scale

* Awhole separate problem behind-the-scenes

* General solution: mounted cloud storage folder
* A single master process is too slow

* Gets much worse forimage data

 (We’ll revisitthis in session 2 )
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PyTorch’s Approach

Every device runs the same training script

Model wrapper uses hooks to handle distributed compute

Primarily data-parallel (FSDP good enough for most cases)

TorchRun: auto-handling of necessary env vars

# FSDP

model = FSDP(
model,
auto_wrap_policy=wrapping_policy,
mixed_precision=mixed_precision_policy,
sharding_strategy=sharding_strateqy_policy,
use_orig_params=cfg.use_torch_compile,

device_id=torch.cuda.current_device(),

limit_all_gathers=True,

T o N(E
param_init_fn=param_init_fn, METRICS

e




PyTorch’s Approach

* Torchrun reference: https://docs.pytorch.org/docs/stable/elastic/run.html

* Torch.distributed and backend info:
https://docs.pytorch.org/docs/stable/distributed.html

* FSDP (and caveats):
https://docs.pytorch.org/docs/2.7 /fsdp.html

* Getting started with FSDP:
https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

* FMS-FSDP (our codebase):
https://github.com/foundation-m l-stack/fms-f

https://tinyurl.com/davis-sigm25
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https://docs.pytorch.org/docs/stable/elastic/run.html
https://docs.pytorch.org/docs/stable/distributed.html
https://docs.pytorch.org/docs/2.7/fsdp.html
https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp

PART 3: Building an Optimized LLM
Pretraining Platform
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The Secret to Optimized Pretraining

What kind of work have you guys done?
XXX is sending us extra bill for extra air
conditioning... the work you're doing is
seriously heating up the GPUs D>
— ETE Team

(after constant 70°C+ and constant peak power usage for a couple months)

SIG
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Source: Kung Fu Panda (2008)



The Secret to Optimized Pretraining

Last year, fms-fsdp broke the record
(to our knowledge) for highest throughput
open-source LLM pretraining platform. How?

« HSDP

* Compile

* Activation checkpointing
* Mixed precision

e Custom dataloader

None of these were particularly unique or novel!
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The Secret to Optimized Pretraining

Last year, fms-fsdp broke the record
(to our knowledge) for highest throughput
open-source LLM pretraining platform. How?

« HSDP
 Compile

* Activation checkpointing

* Mixed precision

e Custom dataloader

None of these were particularly unique or novel!
SIG
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The Secret to Optimized Pretraining

Looking for the secretis counterproductive
You don’t really take a scaled-up platform and optimize it
Optimize a small platform, then scale it up

A fundamentally multidimensional problem

SIG




Scaling: Number of Model Parameters

70B

Model Params

110M
0 SIG

(v-axis notto scale)




Scaling: Number of GPUs

768

Model Params

SIG




Scaling: Amount of Data

13TB

GPUs

Data

Model Params

200MB

SIG

(v-axis notto scale)




Scaling: Sequence Length

512K

GPUs

Data

Model Params

512 Sequence Length

SIG

(v-axis notto scale)




Scaling: Supported Architectures

Encoder+Encoder/Decoder+D

Encoder+Encoder/Decode

GPUs

Data

Model Params

Encoder

Sequence Length

SIG

(v-axis notto scale)




Scaling: Parallelization Schemes

Architectures DDP+FSDP+HSDP+SP

DDP+FSDP

GPUs

Data /

/ Model Params

v
DDP

Sequence Length

SIG

(v-axis notto scale)




A 3D View of Distributed Training

Design space defined along three axes:

« Compute A
Massive datasets
Architecture design (e.g. Transformer parallelism) %"
Parallelization strategies (DDP/TP/PP/SP /... §
Multi-node clusters Communication >
Infiniband, Ethernet, RoCE, ... fé

>
&

Model size, sequence length, batch size
bf16 Llama-33B fits in 80GB “reasonably”

SIG




A 3D View of Distributed Training

Design space defined along three axes:

Vela system architecture

¢ MaSSive datasets llllslpilnellllTsrl)inlelzll:pilni:glI’S|‘=‘jinl-ell
] "
M . . - *}77 N ‘ n
* Architecture design (e.g. Transformer parallelism) . Lr‘i 7:1 2 2x100Gbps
-Il'IIIIIIIIIIIIIIIIIIb L'
* Parallelization strategies (DDP/TP/PP/SP/...) Topof | | Top of Topof | | Top of

Rack 1 Rack 2 Rack 1 Rack 2

e GPU communication overhead ] L 2x1006bps

Node 1 e 3 Node 1

* Multi-node clusters
* Infiniband, Ethernet, RoCE, ...

Node 3 Node 3

* Modelsize, sequence length, batch size
* bf16 Llama-33B fitsin 80GB “reasonably”
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Source: https://research.ibm.com/blog/Al-supercomputer-Vela-GPU-cluster



A 3D View of Distributed Training

Design space defined along three axes:

 Compute
* Massive datasets
* Architecture design (e.g. Transformer parallelism)
* Parallelization strategies (DDP/TP/PP/SP/...)

e GPU communication overhead

* Multi-node clusters
* Infiniband, Ethernet, RoCE, ...

* GPU memory pressure

* Modelsize, sequence length, batch size
* bf16 Llama-33B fitsin 80GB “reasonably”

Source: https://github.com/cedrickchee/llama/blob/main/chattyllama/hardware.md#memory-requirements-for-each-model-size
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A 3D Design Space

We worked with PyTorch to establish and
scale operating points in this design space

* DDP (Distributed Data Parallel)
* Mature baseline
* Replicate model, sync gradients

* High memory/compute, low comm

@é\

M
Compute

Communication
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A 3D Design Space

We worked with PyTorch to establish and
scale operating points in this design space

* DDP (Distributed Data Parallel)

 FSDP (Fully Sharded Data Parallel)
* Atthetime, in beta
* Split model, get weights on demand
* 1.5x comms, much lower memory

Communication

SIG




A 3D Design Space

We worked with PyTorch to establish and
scale operating points in this design space sé\

* DDP (Distributed Data Parallel)
* FSDP (Fully Sharded Data Parallel) HSDP
* HSDP (Hybrid Sharded Data Parallel)

« Atthetime,inbeta ~ mrotosmmmsooge fFooooso:

Go
(¥ 44@
Compute

* Split model within node, duplicate across =~ cfccccctaaaa-- Y
* Trade memory pressure forless comm

Communication

SIG




A 3D Design Space

We worked with PyTorch to establish and
scale operating points in this design space sé\

* DDP (Distributed Data Parallel)
 FSDP (Fully Sharded Data Parallel) HSDP
* HSDP (Hybrid Sharded Data Parallel)

Go
(¥ 44@
Compute

* Tensor and Sequence Parallel when
required (>30B params, >32ktokens) "1ttt RTTTTeoC

Great! So are we ready to train 70B models?

Communication

SIG




Stability Over Time

* Non-homogeneous workloads

* FSDP/HSDP require tight
synchronization of multiple
moving parts

* Innervalidation loop caused hangs

and memory fragmentation

)
]
o

-l
>
Q.
o
—

—
(=

ut
)
0
o
1

O

T5 Train Loss Curves

— Train
Val
1+LR*3K

100000 150000 200000 250000
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Stability Over Time

* Non-homogeneous workloads

 FSDP/HSDP require tight , 15 Traln Loss Carves
synchronization of multiple — l:m
moving parts 1+LR*3K

* Innervalidation loop caused hangs
and memory fragmentation

)
]
o

-l
>
Q.
o
—

—
(=

ut
)
0
o
1

O

100000 150000 200000 250000

Fix: remove/externalize validation and other utilities SIG
METRICS
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Stability Over Time

* Non-homogeneous workloads

* Checkpointincreasing memory

* Fluctuationsinreservedvs
allocated cuda memory

* Across devices and when
saving checkpoints

™)
o
=
-
S
£
T
=
>
o
o

HSDP 3B-Decoder Mem Profile With Ckp

mem reserved during ckp writing
mem reserved after ckp completion
mem allocated during ckp writing
mem allocated after ckp completion

40 60

Update Steps
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Stability Over Time

° Non_homogeneous workloads HSDP 3B-Decoder Mem Profile With Ckp

* Checkpointincreasing memory

* Fluctuationsinreservedvs
allocated cuda memory

w
(=]

mem reserved during ckp writing
mem reserved after ckp completion
mem allocated during ckp writing
mem allocated after ckp completion

ANM—T— T 1—

40 60

Update Steps

B
o

* Across devices and when
saving checkpoints

w
(=]

™)
o
=
-
S
£
T
=
>
o
o

N
o

Fix: work with PyTorch to identify and expose the
environmentvariable causing memory fragmentation MESTI%CS
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Stability Over Time

* Non-homogeneous workloads
* Checkpointincreasing memory

* Prefix Language Modeling

* PLM: from beginning of sequence,
predictthe rest

* Encoder-Decoder model

* Variable prompt length:
RAPID desynchronization

Vanilla PLM

Prefix
self-attn Cross-attn

Constant-Length Combined PLM

Prefix Suffix Cre tt
self-attn self-attn oss-En
N (€]

METRICS




Stability Over Time

* Non-homogeneous workloads
* Checkpointincreasing memory

* Prefix Language Modeling

* PLM: from beginning of sequence,
predictthe rest

* Encoder-Decoder model

* Variable prompt length:
RAPID desynchronization

Vanilla PLM

Prefix
self-attn Cross-attn

Constant-Length Combined PLM

Prefix Suffix Cre tt
self-attn self-attn oss-En

Fix: combine mirrored sequences and masks

to keep tensor dimensions constant

SIG
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Stability Over Time

Non-homogeneous workloads

Checkpoint increasing memory

Prefix Language Modeling

FSDP is out of beta and much more stable now, but the point stands

Great! So now are we ready to train 70B models?

SIG




A Long Tail of Practical Challenges

* Distributed model checkpointing

* 7B checkpointis ~81GB
* Streaming that one file to cloud takes an hour!

30.0000

* 12hrinterval: 8% slowdown

10.0000

* 8hrinterval: 13% slowdown

Params Saved Per Minute

* 6hrinterval: 17% slowdown
e 4hrinterval: 25% slowdown

* ... if you can write these atall

Source: https://pytorch.org/blog/performant-distributed-checkpointing/

v |

Dist Checkpointing
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A Long Tail of Practical Challenges

* Distributed model checkpointing

* 7B checkpointis ~81GB
* Streaming that one file to cloud takes an hour!

* 12hrinterval: 8% slowdown

30.0000

10.0000

* 8hrinterval: 13% slowdown

Params Saved Per Minute

* 6hrinterval: 17% slowdown
* 4hrinterval: 25% slowdown
* ... if you can write these atall
* Fix: work with PyTorch on
sharded checkpointing
* Everyworker writes 1/n of the checkpoint
* Tweaks for cloud-based storage (eventual consistency)

* A majorrelease feature for PyTorch 2.1

Source: https://pytorch.org/blog/performant-distributed-checkpointing/

v |

Dist Checkpointing
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A Long Tail of Practical Challenges

* Distributed model checkpointing

» Stateful, distributed data loading
* Training is< 1 epoch: mid-epoch recovery necessary
» Stateful
* Distributed
* Rescalable
e Subdataset re-weighting
* Modular/extensible

SIG




A Long Tail of Practical Challenges

* Distributed model checkpointing

e Stateful, distributed data loading

* Activation checkpointing

Recompute activations in backward pass
(instead of storing)

Sophisticated fine-grained policies
Trade compute for memory

If comm << comp, you shouldn’t use this!
(use gradient accumulation instead)

o3
[+ %
(G}
= -
S
1]
(=]
~
-
c
S
¥4
o
L
<
h=}
=

N
v
=)

[
(2,
o

Llama 7B Throughput (1 Node)

2 4 8
N Sequences (length 4k)

Act Ckp
No Act Ckp

Partial Act Ckp
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A Long Tail of Practical Challenges

* Distributed model checkpointing
» Stateful, distributed data loading
* Activation checkpointing

e CPU memory constraints
* Each cpuowns 1/n of the full dataset
(will this fit in RAM?)
* Streaming data loaders need extra:
* File metadata for sharding

* File ownership logic to minimize pulls
* Shuffling and mixing steps

SIG




A Long Tail of Practical Challenges

* Distributed model checkpointing
» Stateful, distributed data loading
* Activation checkpointing
e CPU memory constraints

 CPU latency
* Many sequential, unfused CUDA calls: gpu/cpu sync
» Different hardward - up to 2x forward pass speed

SIG




A Long Tail of Practical Challenges

* Distributed model checkpointing
» Stateful, distributed data loading
* Activation checkpointing

e CPU memory constraints

 CPU latency

* Document size

* Long documents with >840M characters
* Documents with length zero

SIG




A Long Tail of Practical Challenges

* Distributed model checkpointing
» Stateful, distributed data loading
* Activation checkpointing

e CPU memory constraints

 CPU latency

* Document size

 Batch size limits

* More gpus - larger batches = less stochasticity 2 lower data efficiency
* Above ~4M tokens, more gpus slows convergence!

SIG




A Long Tail of Practical Challenges

e Superimpose Earth’s mountains

* What location has the highest
average elevation?

Source: https:/en.wikipedia.org/wiki/Mount_Everest#/media/File:Mount_Everest_as_seen_from_Drukair2_ PLW edit_Cropped.jpg
Source: https://en.wikipedia.org/wiki/Half_Dome#/media/File:Half_Dome10.jpg
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A Long Tail of Practical Challenges

e Superimpose Earth’s mountains

* What location has the highest
average elevation?

Source: https:/en.wikipedia.org/wiki/Mount_Everest#/media/File:Mount_Everest_as_seen_from_Drukair2_ PLW edit_Cropped.jpg
Source: https://en.wikipedia.org/wiki/Half_Dome#/media/File:Half_Dome10.jpg
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A Long Tail of Practical Challenges

Superimpose Earth’s mountains

What location has the highest
average elevation?

You have no maps, and visibility
is poor

* You can:
* Look around
* Walk for a bit

* Teleportto the same locationon a
different mountain

Source: https:/en.wikipedia.org/wiki/Mount_Everest#/media/File:Mount_Everest_as_seen_from_Drukair2_ PLW edit_Cropped.jpg
Source: https://en.wikipedia.org/wiki/Half_Dome#/media/File:Half_Dome10.jpg
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A Long Tail of Practical Challenges

Superimpose Earth’s mountains

What location has the highest
average elevation?

You have no maps, and visibility
is poor

* You can:

* Look around
* Walk for a bit

* Teleportto the same locationon a
different mountain

Source: Ceausu Cristian, https://www.facebook.com/photo.php?fbid=990341093093506
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A Long Tail of Practical Challenges

Superimpose Earth’s mountains

What location has the highest
average elevation?

You have no maps, and visibility
is poor

* You can:

* Look around
* Walk for a bit

* Teleportto the same locationon a
different mountain

Source: Ceausu Cristian, https://www.facebook.com/photo.php?fbid=990341093093506

Y© Ceausu Cristian
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A Long Tail of Practical Challenges

Any batch containing Ronda will
never explore to the left

If you wander into the gorge, you
can climb up the other side

You need the freedom to wander

This mountain-climbing
exercise is an exact
description of SGD

Source: Ceausu Cristian, https://www.facebook.com/photo.php?fbid=990341093093506

Y© Ceausu Cristian
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A Long Tail of Practical Challenges

* Distributed model checkpointing
» Stateful, distributed data loading
* Activation checkpointing

e CPU memory constraints

 CPU latency

* Document size

* Batch size limits
* More gpus - larger batches = less stochasticity 2 lower data efficiency
* Above ~4M tokens, more gpus slows convergence!
* Furtherincreases OK if done laterin training

SIG




A Long Tail of Practical Challenges

* Distributed model checkpointing * Code versioning

» Stateful, distributed data loading * Mixed precision

* Activation checkpointing LR tuning

e CPU memory constraints
CPU latency

LR scheduling

Modelinitialization schemes

* Document size Pretraining task(s)

Batch size limits Network architecture

Data file size ° ...

SIG




An 80/20 Rule for Distributed Training

80% of academic literature focuses on
three main aspects of training

A
We spent only 20% of our time 2
working on these three dimensions 3
o
80% of our time on a host of smaller P—————— >
and less-discussed challenges égé
S

>
&

Even with matured platforms,
expect a similar distribution of effort

SIG
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Recap

* General concepts and intro to training at scale
* Basic design philosophy of PyTorch
* Types of parallelism

e Data
* Model

* Running PyTorch at scale

* Optimizing training at scale
* Optimization as a process of scaling up
* 3D design space
e Stability over time
* Long tail of practical implementation challenges

* Next session: a bag of optimization tricks, resolving the data question,

some remarks on inference




Maximizing LLM Throughput in PyTorch:
Optimized Pipelines for Modern Deep
Learning Workloads

Davis Wertheimer
IBM Research
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Recap

* General concepts and intro to training at scale
* Basic design philosophy of PyTorch
* Types of parallelism

e Data
* Model

* Running PyTorch at scale

* Optimizing training at scale
* Optimization as a process of scaling up
* 3D design space
e Stability over time
* Long tail of practical implementation challenges

SIG




Contents
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INTRO

BASICS OF TRAINING AT SCALE
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* Activation checkpointing
* Torch.compile
* Flash attention
* Mixed precision
« GQA
* PyTorch Profiler

DATA AT SCALE
ACCELERATING INFERENCE
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Activation Checkpointing

* Recall that the backward pass requires both weights and inputs

WX = v L= f) dW_XdYT dX_WTdY
I =10 =G TV a
* FSDP avoids storing full weights by

reconstructing on-demand Llama 78 Throughput (1 Node)

* Do the same thing with inputs!

* Selectivity in where/what to wrap

Act Ckp

No Act Ckp

* VS gradient accumulation
(33% extra compute vs ~2x comms)

Partial Act Ckp

o 3
o
[
=2
=2
®
o
=2
o
=
S
g

4 8 16
nces (length 4k)
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Torch Compile

Re-compile and optimize the execution graph
* Remove frequent CPU/GPU syncs
* Fuse operations

Does support all ops:
* No ops depending on CPU (print, nonzero, where, tolist)
* No ops depending on data (e.g. if x>0 then...)
* No functions with variable numbers/formats of output

Variable tensor size is supported, but re-compiles every time

Does support custom kernels (Triton-native)

SIG




Torch Compile

* Unsupported ops cause “graph breaks”

* The more graph breaks, the worse the performance

* Llama training pain points:
* Reimplementing RoPE (real-valued)
* Extra RoPE caching to support input-dependent scaling

* Training vs inference if/elses
 FSDP boundaries

Embedding Embedding

Transformer | ™ Transformer |°
Block e Block /

No graph breaks: 1 graph break: N graph breaks:
max performance minimal impact high degradation

SIG
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Torch Compile

DO use torch compile...

* |If your workload is already well-optimized

If you’re compute-bottlenecked

Forinference

use torch compile...

If your model has complex code

If your model does data-based indexing a lot (i.e. MoE)

If you’re communication-bottlenecked

SIG
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Flash Attention

* Optimized implementation of QKV attention by Tri Dao
* Main bottleneck of attention is reading QK’ into HBM
* Avoid materializing QK’ by computing a(QK’)V chunkwise

* Separate denominator tracking lets us do softmax cumulatively

* Replaces QK’with Kand V (much smaller)

R I EGERTAAUEIP vt
(AL I T LRI

AT A
N M -

Output

SIG
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Source: https://pytorch.org/blog/flash-decoding/



Source: https://pytorch.org/blog/flash-decoding/

Flash Attention

* A separate implementation for inference (“Flash Decoding”)

* On-device sequence parallel
* Again, extra denominator tracking for the reduction over softmax

Queries %

Output

Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5
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Flash Attention

* Always appropriate, but gains don’t always translate

* Attention layer is at least ~1/3 of model computation (best-case)

FlashAttention Speedup, A100

mmm Dropout + Masking
Masking Only
mmm No Masking, No Dropout

B

w

=

=
@
-+~
wm
1]
o
w
v
£
=
=2
a
=
B
@
v
o
n

128 256 512 1024 2048 4096
Sequence Length

Figure 5: Speedup over standard PyTorch attention at different sequence lengths, on A100.

Source: FlashAttention: Fast and Memory-Efficient Exact Attention with |O-Awareness (2022)
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Mixed Precision

* Lower precision runs faster, but isn’t as stable

* Some rules of thumb:
* Master weights and gradients in fp32 (FSDP helps)
* Activations and ephemeral weights in bf16
* Matmuls can do fp8, but should accumulate in higher precision
* Alldivision (softmax, layernorm) in fp32

b,‘_ Gradient _J'

FP32

| [ Master | ™FP32 [ Optimizer |

Weight | | States

i Input Y To BF16 ™ \ TaFPa | Output |
| Gradient | | Gradient |
32 BF16
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Mixed Precision

* For FSDP, policies allow for fine-grained control

* Other options:

e torchao (
* AMP (

W o~ WU & W N

e e
bW N RS

[
o

o
o~

import torch

from torch.distributed.fsdp import MixedPrecision

from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from model_code import model

# Master weights and grads are fp32, unless we manually cast the model to something else

bfSixteen = M Precision(
# Ephemeral weights
param_dtype=torch.bfloatl6,
# Gradient communication
reduce_dtype=torch.bfloatl6,
# Activations
buffer_dtype=torch.bfloatlt,

model = FSDP(
model{),
mixed_precision = bfsixteen,

SIG
METRICS


https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://docs.pytorch.org/docs/stable/notes/amp_examples.html

Group-Query Attention

* KV cache is data-rich —why only query itonce?
* Shrink number of KV heads, group Q heads

e Saves massive inference overhead
* Memory limits
* Overhead from reading KV cache into HBM (i.e. Flash)

Multi-head Grouped-query

Queries

Multi-query
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Demo:
Bag of Tricks

https://tinyurl.com/davis-sigm25

Activation Checkpointing
Torch Compile

Flash Attention

Mixed Precision

GQA
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METRICS




INTRO
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OPTIMIZING TRAINING AT SCALE
BAG OF TRICKS

* Activation checkpointing
Torch.compile

Flash attention

Mixed precision

GQA

PyTorch Profiler

5. DATA AT SCALE
6. ACCELERATING INFERENCE
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Torch Profiler

° A (tOO) powerful # On‘rank @ only: . .
. . profiler = torch.profiler.profile(
diagnosis tool activities=|
torch.profiler.ProfilerActivity.CPU,
° A ConteXt Wra pper that torch.profiler.ProfilerActivity.CUDA,
I,
traCkS com putatlon schedule=torch.profiler.schedule(wait=1, warmup=2, active=3, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler("profile_traces"),
° Exports huge JSON profile_memory=True,
with_stack=False,
* For Chrome users: record_shapes=True,
chrome://tracing
e Otherwise: for step in range(steps):
UI.perfetto.dev # [YOUR COMPUTATION HEREI]
°

Visually examine profiler.step()
runtimes

# Saves to [working directoryl/profile_traces/[gibberish]l.pt.trace.json
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Demo:

Profiling the
Bag of Tricks

https://tinyurl.com/davis-sigm25

ui.perfetto.dev

Flash Attention

Mixed Precision

Torch Compile

Activation Checkpointing
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Data at Scale

Stateful and checkpointable, mid-epoch resumption
Auto-rescale checkpoints to changing workload/GPU allocations
Data streaming with efficient shuffling: queue TB of data quickly
Efficient and asynchronous, no peer-to-peer

Dynamic data mixing and tokenization (minimize preprocessing)

o ok b=

PyTorch-native, modular, extensible

(MosaicML has the first 4, but not 5 or 6)

SIG
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Data at Scale

So we built it ourselves!

Proven:
* Hundreds of training jobs
* Observed months of continuous operation

e Over 90,000 tokens/gpu/sec while being “async”

So what?
* Training pipelines move at the speed of the slowest bottleneck

 FSDP+compile+fp8+flash+etc. demands a good data loader!

SIG




Our Dataloader Journey

L]
[ ]
[ ]
lD.QTb T4.7Tb |8.5Tb 13.1Tb |2024 | 15+7Tb
|Mid-epoch resumption |Compose- |Resca|e- |Streaming|Dynamic I_ FSDP test runs J |LCG |Asynchronous Tokenize |Mu|ti-
(3/23) able able (8/23) mixing (12/23 - 2/ 24) shuffling (5/24) (7/24) process
(6/23) (7/23) (9/23) (4/24) (8/24)

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pullfiles and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Mid-epoch resumption

Mid-Epoch Resumption

Compose- [Rescale- |Streaming
(8/23)

able able
(6/23) (7123)

Dynamic FSDP test runs [Kelc] Asynchronous
mixing (12/23 - 2/ 24) shuffling (5/24)
(9/23) (4/24)

Mar 2023

Mid-epoch resumption

Resume training runs with uninterrupted, unchanged behavior

Composability

Support multi-stage processing, with state at each level

Rescalability

Scale to different numbers of GPUs without changing dataorder

Data streaming

Pullfiles and documents on-demand with local shuffling

Dynamic data mixing

Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling

Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity

Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization

Support for multiple file types and degrees of preprocessing

Multi-processing

Defer setup to allow several parallel workers per device

Multi-

process
(8/24)
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Mid-Epoch Resumption

At the time, no distributed dataloader
was available with mid-epoch resumption

PyTorch does support non-stateful
distributed loading via DistributedSampler

Baby steps: add n_seen argument
to existing DistributedSampler

Mar 2023

Stateful_DistributedSampler(data.distributed.DistributedSampler):

Extends the PyTorch distributed data sampler with the ability to restart from a given step via the extra n_seen argument.

ataset, n_seen, num_replicas=None, rank=None, shuffle=True, see

m(len(self.dataset), generator=g).tolist
indices = list(range(len(self.dataset))) # type:

if not self.drop_last:

add ext amples t

padding_size = self.total_size - (indices)
if padding_size <= len(indices):

indices += indices[:padding_size]
else:

indices += (indices % math.ceil(padding_size / len(indices)))[:padding_size]
enly divisible.

self.total_size]
assert len(indices) == self.total_size

indices = indices[self.rank : self.total_size : self.num_replicas]
assert len(indices) == self.num_samples

iter(indices)

SIG
METRICS

©

\ 4



Mid-epoch resumption

Composable Iterable Datasets

Compose- |Rescale- |Streaming
(8/23)

able able
(6/23) (7/23)

Dynamic FSDP test runs LCG Asynchronous
mixing (12/23 - 2/24) shuffling  (5/24)
(9/23) (4/24)

June 2023

Mid-epoch resumption

Resume training runs with uninterrupted, unchanged behavior

Composability

Support multi-stage processing, with state at each level

Rescalability

Scale to different numbers of GPUs without changing dataorder

Data streaming

Pullfiles and documents on-demand with local shuffling

Dynamic data mixing

Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling

Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity

Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization

Support for multiple file types and degrees of preprocessing

Multi-processing

Defer setup to allow several parallel workers per device

Multi-

process
(8/24)
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Composable Iterable Datasets

* Multi-stage data transformation requires

multiple loaders

* Indexing doesn’twork when
items in # items out
(e.g. packing/slicing documents)

* Extend PyTorch’s IterableDataset
to create wrappers with
recursive iter()

* Then extend with recursive
state_dict() / load_state_dict()

June 2023

MLM/CLM

Pack/slice

Data mixing

Base
Reader

SIG




Mid-epoch resumption

Rescalability Over GPUs

Compose- |Rescale- |Streaming
(8/23)

able able
(6/23) (7123)

Dynamic FSDP test runs LCG Asynchronous
mixing (12/23 - 2/24) shuffling  (5/24)
(9/23) (4/24)

July 2023

Mid-epoch resumption

Resume training runs with uninterrupted, unchanged behavior

Composability

Support multi-stage processing, with state at each level

Rescalability

Scale to different numbers of GPUs without changing data order

Data streaming

Pullfiles and documents on-demand with local shuffling

Dynamic data mixing

Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling

Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity

Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization

Support for multiple file types and degrees of preprocessing

Multi-processing

Defer setup to allow several parallel workers per device

Multi-

process
(8/24)
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Rescalability Over GPUs

* Auto-reshard handling for wrappers:
» State flags: RNG states, token counts, scalars (discard)
* Reshard flags: lists, buffers (re-partition)
* Easily extensible — just specify states/reshards

* Rescalability layer: a list of
subloaders / logical shards
* Everything before this layer stays non-elastic
* Everything above this layer auto-reshards

* No repartitioning, still no revisiting seen data

July 2023

World
Size 4

Worker 1 <

Worker 2 <

Worker 3 -<

Worker 4 <

Logical World

Shards

/

'

Size 3
\

>- Worker 1

>' Worker 2

> Worker 3

_J SIG




Mid-epoch resumption

Data Streaming

Compose- |Rescale- |Streaming
(8/23)

able able
(6/23) (7123)

Dynamic FSDP test runs LCG Asynchronous
mixing (12/23 - 2/24) shuffling  (5/24)
(9/23) (4/24)

Aug 2023

Mid-epoch resumption

Resume training runs with uninterrupted, unchanged behavior

Composability

Support multi-stage processing, with state at each level

Rescalability

Scale to different numbers of GPUs without changing data order

Data streaming

Pullfiles and documents on-demand with local shuffling

Dynamic data mixing

Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling

Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity

Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization

Support for multiple file types and degrees of preprocessing

Multi-processing

Defer setup to allow several parallel workers per device

Multi-

process
(8/24)
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Data Streaming

Data streaming requires
dedicated shuffling

Minimize cache size
when possible

Within-file: full shuffle

Across-file: buffer shuffle

¢ Given buffer:

e Choose random index
* Overwrite with new value
* Yield old value

x
[}
°
£
[
=
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[}
an

Source index
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Aug 2023

Ideal random shuffle, 1.5k data points

200 400 600 800 1000 1200
Appearance index

Sliding window shuffle, buffer size 300

200 400 600 800 1000 1200 1400
Appearance index

400 600 800 1000 1200
Appearance index

Avg distance between
consecutive items:

500

~100

~300
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Mid-epoch resumption

Data Mixing

Compose- |Rescale- |Streaming
(8/23)

able able
(6/23) (7123)

Sep 2023

Dynamic FSDP test runs [Kelc] Asynchronous
mixing (12/23 - 2/ 24) shuffling (5/24)
(9/23) (4124)

Mid-epoch resumption

Resume training runs with uninterrupted, unchanged behavior

Composability

Support multi-stage processing, with state at each level

Rescalability

Scale to different numbers of GPUs without changing data order

Data streaming

Pullfiles and documents on-demand with local shuffling

Dynamic data mixing

Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling

Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity

Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization

Support for multiple file types and degrees of preprocessing

Multi-processing

Defer setup to allow several parallel workers per device

Multi-

process
(8/24)
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Stateless Shuffling April 2024

v

Mid-epoch resumption Compose- |Rescale- |Streaming | Dynamic FSDP test runs LCG Asynchronous Tokenize |Multi-
(3/23) able able (8/23) mixing (12/23 - 2/ 24) shuffling  (5/24) (7124) process
(6/23) (7/23) (9/23) (4/24) (8/24)

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pullfiles and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device SIG

METRICS




Stateless Shuffling April 2024

throughput (token per gpu per sec)
— dolma-compile ®

T

CPU bottlenecks matter! i

METRICS



Stateless Shuffling

LCG (Linear Congruential Generator)
(adapted from Knuth, 1997)

Random walk over ANY size

State is three scalars!
(seed, size, last index)

>100Gb overhead to ZERO

x
[0}
o
£
1}
=4
=]
o
n

Source index

w
o
o

April 2024

Ideal random shuffle, 1.5k data points

600 800 1000 1200
Appearance index

LCG shuffle, 1.5k data points

600 800 1000 1200
Appearance index

1400

1400
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Asynchronous Loading May 2024

[ ]
[ )
[ ]
lO.QTb T4.7Tb |8.5Tb 13.1Tb |2024 | 15+7Tb
|Mid-epoch resumption |Compose- |Resca|e- |Streaming|Dynamic I_ FSDP test runs J LCG |Asynchronous |Tokenize Multi- i
(3/23) able able (8/23) mixing (12/23 - 2/ 24) shuffling  (5/24) (7124) process
(6/23) (7/23) (9/23) (4/24) (8/24)
Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior
Composability Support multi-stage processing, with state at each level
Rescalability Scale to different numbers of GPUs without changing data order
Data streaming Pullfiles and documents on-demand with local shuffling
Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly
Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead
Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block
On-the-fly tokenization Support for multiple file types and degrees of preprocessing
Multi-processing Defer setup to allow several parallel workers per device SIG




Asynchronous Loading

Single-process (accessible state)

Training Training

Asynchronous (state inaccessible, handled internally)

Training Training Training

* Use existing num_workers arg in torch DataLoader

May 2024

Training

* Auto-handle checkpoints via another iterable wrapper CheckpointDataset

SIG




On-the-Fly Tokenization July 2024

[ ]
[ )
[ ]
lD.QTb T4.7Tb |8.5Tb 13.1Tb |2024 | 15+7Tb
|Mid-epoch resumption |Compose- |Resca|e- |Streaming|Dynamic I_ FSDP test runs J LCG |Asynchronous |Tokenize Multi- i
(3/23) able able (8/23) mixing (12/23 - 2/24) shuffling  (5/24) (7124) process
(6/23) (7/23) (9/23) (4/24) (8/24)
Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior
Composability Support multi-stage processing, with state at each level
Rescalability Scale to different numbers of GPUs without changing data order
Data streaming Pullfiles and documents on-demand with local shuffling
Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly
Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead
Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block
On-the-fly tokenization Support for multiple file types and degrees of preprocessing
Multi-processing Defer setup to allow several parallel workers per device SIG




Multi-Process Support

Aug 2024

L]
[ ]
[ ]
lD.QTb T4.7Tb |8.5Tb 13.1Tb |2024 | 15+7Tb
|Mid-epoch resumption |Compose- |Resca|e- |Streaming|Dynamic I_ FSDP test runs J |LCG |Asynchronous Tokenize |Mu|ti-
(3/23) able able (8/23) mixing (12/23 - 2/ 24) shuffling (5/24) (7/24) process
(6/23) (7/23) (9/23) (4/24) (8/24)

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pullfiles and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device

SIG
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Data Mixing

Aug 2024

e [terators and sub-iterators: a tree structured loader

* Multiple subdatasets with multiple shards per dataset

PyTorch
Dataloader
(2 workers per
device)

Training script

1 [
Checkpoint Local Window Packing/Slicing Subdataset | Scalability Layer | Streaming File Raw Data
Management Shuffle Layer Layer Sampling Layer [ (2 logical shards : Iterators

Layer (seq len 4096) (2 subdatasets) | per worker)
1
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More Recently

[ ]
[ )
[ ]
lD.QTb T4.7Tb |8.5Tb 13.1Tb |2024 | 15+7Tb
|Mid-epoch resumption |Compose- |Resca|e- |Streaming|Dynamic I_ FSDP test runs J LCG |Asynchronous Tokenize |Multi- i
(3/23) able able (8/23) mixing (12123 - 2/ 24) shuffling  (5/24) (7124) process
(6/23) (7/23) (9/23) (4/24) (8/24)
Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior
Composability Support multi-stage processing, with state at each level
Rescalability Scale to different numbers of GPUs without changing data order
Data streaming Pullfiles and documents on-demand with local shuffling
Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly
Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead
Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block
On-the-fly tokenization Support for multiple file types and degrees of preprocessing
Multi-processing Defer setup to allow several parallel workers per device SIG

METRICS




More Recently

Mid-epoch resumption Compose- |Rescale- |Streaming |Dynamic FSDP test runs LCG Asynchronous Tokenize |Multi-
(3/23) able able (8/23) mixing (12/23 - 2/24) shuffling (5/24) (7/24) process
(6/23) (7/23) (9/23) (4/24) (8/24)

* Open PRs contributing to TorchTitan and TorchData
* Adding new capabilities and ironing out edge cases

* Rely on thisas we upgrade to FSDP2, FP8 training, new hardware, etc.

SIG
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Takeaway

Distributed data loading is just as complex
and multidimensional as distributed training!

Arecent
horror story:
an interaction
between long
documents
and small files

SIG
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Demo:
Setting Up a
Distributed

Dataloader
https://tinyurl.com/davis-sigm25
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PART 6: Accelerating Inference
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Contents

1. INTRO

BASICS OF TRAINING AT SCALE
OPTIMIZING TRAINING AT SCALE
BAG OF TRICKS

DATA AT SCALE

ACCELERATING INFERENCE

* The nature of inference workloads
* Bagoftricks

o ok~ b

* Speculative decoding

SIG




The Nature of Inference Workloads

LLM pretraining is homogeneous, inference is not!

* Multi-stage:
1. Encodethe
prompt (prefill)
2. Generate token
by token (decode)

* Bottlenecks:

1. Memory
(K/V cache)

2. Device-inefficiency
3. (scale)

prompt_token_ids

generated_token_ids

prompt_token_ids prevtoken KV cache

prefill decode

nexttoken KV cache
(updated)

O(dattn>< (lprompt + lgen))

1sttoken KV cache

0(dgeen X lzzrrompt)

Compute bound Memory bandwidth bound

v

SIG




The Nature of Inference Workloads

A familiar 80/20 rule:
* 80% of discussion / papers focus on model optimization
* 80% of work is in dealing with scale and heterogeneity

* New solutions are less algorithms, and more names
for general concepts
1. Dynamic vs continuous batching
2. Chunked vs disaggregated prefill
3. Prefix caching / paged attention

SIG
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Dynamic vs Continuous Batching

Fix device-inefficiency by batching

* “Inference server” to schedule and coordinate model calls

* But how to batch heterogeneous workloads?

SIG




Chunked vs Disaggregated Prefill

Continuous batching addresses request heterogeneity,

but not stage heterogeneity

 Compute prefill chunk-by-chunk

 Compute prefill in an entirely separate server

Continuous Batching Causes Interference

Continuous Batching
Batch R1 and R2 together in 1 GPU

Time wasted for decode

—
]| 888
I 080 ..

f Time wasted for prefill
R2
arrives

Source: https://hao-ai-lab.github.io/blogs/distserve/

wasted time

Continuous Batching
Batch R1~R4 together in 1 GPU

<008 8
. g

Request ime

arrival R2 R3 R4



Prefix Caching / Paged Attention

Re-use K/V cache entries as much as possible
* Branching inputs (beam search, templates)

* One level of indirection for KV cache addresses

Beam candidate 0

Beam candidate 1 Block 0 Block 1 Block 3 Block 6 Block 10

Beam candidate 2

Beam candidate 3 Block 2° 1 Block 12

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention (2023)

SIG
METRICS
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Prefix Caching / Paged Attention

Re-use K/V cache entries as much as possible
* Branching inputs (beam search, templates)
* One level of indirection for KV cache addresses

* Addresses memory and device-inefficiency

Physical KV blocks

Ref count: 2 — 1
{ Sample )
{ \ —
; - |

sou1 | om | o ol smcs || o e o | o

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention (2023)
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A Similar Bag of Tricks

 Parallelism (TP /PP /DP /SP /EP)
* Mixed precision (quantization)

* Torch compile

* GQA

* Speculative decoding

SIG
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INTRO

BASICS OF TRAINING AT SCALE
OPTIMIZING TRAINING AT SCALE
BAG OF TRICKS

DATA AT SCALE

ACCELERATING INFERENCE

* The nature of inference workloads

* Bagoftricks
* Speculative decoding




Speculative Decoding

* Baseline: predict 1 token at atime
* Memory bottleneck, compute underutilized

A B CDE .

METRICS




Speculative Decoding

* Baseline: predict 1 token at atime
* Memory bottleneck, compute underutilized

* Speculation: use a small model to guess n tokens ahead

ABCDETF G X,
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Speculative Decoding

* Baseline: predict 1 token at atime
* Memory bottleneck, compute underutilized

* Speculation: use a small model to guess n tokens ahead
* Forward pass reveals how many match the true model

F GHY

ABCDETF G X,
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Speculative Decoding

* Baseline: predict 1 token at atime
* Memory bottleneck, compute underutilized

* Speculation: use a small model to guess n tokens ahead
* Forward pass reveals how many match the true model
* Unbroken chain of correct guesses - free tokens

ABCDETF G X,
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Speculative Decoding

* Baseline: predict 1 token at atime
* Memory bottleneck, compute underutilized

* Speculation: use a small model to guess n tokens ahead
* Forward pass reveals how many match the true model
* Unbroken chain of correct guesses - free tokens
« Dump anyincorrect guesses, repeat F G H|Y

ABCDTETFGH,
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Speculative Decoding

* Baseline: predict 1 token at atime
* Memory bottleneck, compute underutilized

* Speculation: use a small model to guess n tokens ahead
* Forward pass reveals how many match the true model
* Unbroken chain of correct guesses - free tokens
* Dump anyincorrect guesses, repeat

ABCDTETFGH,

METRICS




Speculative Decoding

* Baseline: predict 1 token at atime
* Memory bottleneck, compute underutilized

* Speculation: use a small model to guess n tokens ahead
* Forward pass reveals how many match the true model
* Unbroken chain of correct guesses - free tokens
« Dump anyincorrect guesses, repeat F G H|Y

* In practice: multiple candidate sequences
per prompt

ABCDETF G X,

METRICS




Speculative Inference Loop

Perform forward pass on prompt, fillkv cache

While n_tokens < requested:

* Fetch latest token and embedding

* Speculator generates k candidate suffix sequences

* Base model scores candidates

* Correct tokens from best candidate are added to result

* K/V for ONLY those tokens and candidate are added to kv-cache

Try it yourself!

https://tinyurl.com/davis-sigm25
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Speculator / Draft Model

Some concerns and research questions:
* Speedup depends on speculator accuracy
* Must balance speculator overhead vs power

* Must also balance batch size (candidates) vs recall

So we tried it!

SIG




Speculator / Draft Model

Either a smaller LLM, or a bespoke model extension T4

* Small as possible I

* Recurrent architecture, tree of outputs (candidates) Act

* Bespoke extensions: T / [
* Latest embedding input

T3

* Without it, just an n-gram model
* No understanding of context

T2
e Sampled token input [ /]
* Without it, conditioning on expectation over multiple tokens
Act

* Lots of junk candidates

Z T

Act
T2

SIG
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Two-Stage Training Pipeline

Stage 1: align to text

» Standard CLM task

* 32gpus, 4k seq len, 1M bsize
* 15k steps/ 16B tokens

* 1.1/1.5 daysfor 7/13B

* 1.95-2.49x logical speedup
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2000 4000 6000 8000 10000 12000 14000
Training Steps

Stage 2: align to base model

* Generate targets from base model
* 32 ¢gpus, 64+256 seq len, 1M bsize
* 6k steps /6B tokens

* 0.9/1.5daysfor 7/13B

* 2.18-2.72x logical speedup

N (€
1000 2000 3000 4000 5000 6000 ]\/IETR—[CS

Training Steps 6



Results

» 2-3ximprovement in wall-clock latency

* Ontop of already-optimized inference (2x other papers)

[INST]Write a poem for my three year old[/INST] [INST]Write a poem for my three year old[/INST]

Source: https://pytorch.org/blog/hitchhikers-guide-speculative-decoding/
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Results

» 2-3ximprovement in wall-clock latency

* Ontop of already-optimized inference (2x other papers)

e 44k downloads on our Llama3-8B accelerator

Repo Type

# Model

# Model

Repo Name

ibm-ai-
platform/
llama3-8b-
accelerator
ibm-ai-
platform/
llama3-70b-
accelerator

Total Downloads

44.4k

SIG
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Results

ms/tok (64) | 0 . 16 32 48) , 4 8 16

10.54 5.76 5 . 6.00 7.21 12.87 9.11 8.89 8.91 9.68 11.51
10.66 .32 6.01 5.32 7.62 11.15 p. 14.98 10.78 10.94 11.56 13.24 16.83
10.78 . 6.67 . 11.90 18.31 . 19.62 14.24 15.63 16.78 2097  29.05

| 1.00 244 2. 2.96 3.03 | 1.00 2.01 221 261 274

Table 1. Iterative latency (milliseconds per token) for Llama2-7B. Rows indicate batch size b, columns indicate number of parallel candi-
dates k. k = 0 indicates non-speculative baseline, and logical speedup (tokens per step) is given as 7. Prompt length p is 64 (left) vs 2048
(right). As baseline computational load increases, speculative decoding provides less improvement.

ms/tok (512) 1 2 4 8 16

20.12 646 644 10.55 6.60 7.98
22 21.14 625 619 6.90 10.93
10.08 I . 2282 671 7.55 10.16 17.91

| 1.00 549 573 5.92

Table 2. Iterative latency (milliseconds per token) for Codellama-13B-instruct. Rows indicate batch size, columns indicate number of
parallel candidates. Candidates 0 indicates non-speculative baseline, and logical speedup (tokens per step) is given as 7. Prompt length is
64 (left) vs 512 (right). As baseline computational load increases, speculative decoding provides less improvement.




Speculative Decoding: Takeaways

* Leverage available parallelism bandwidth by turning generation into
parallel verification

Effectiveness decreases as computational load / efficiencyincreases

Bespoke accelerators work better in lab conditions

Separate LLM speculators are more robust

SIG
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Conclusion

1. Optimization as a practical problem vs an academic problem

* Multidimensional and open-ended

* Long tails of practical challenges
* Training: stability, data handling
* Inference: batching, scheduling, heterogeneity

* No universal good solutions!

2. Plenty of useful tools
* Parallelism, mixed precision, compile, GQA
* Training: activation checkpointing, torch profiler
* Inference: prefix caching, speculative decoding

3. Theright perspective to reconcile and leverage points 1 and 2

SIG




https://tinyurl.com/davis-sigm25
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