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Motivation

Source: ChatGPT in the Age of Generative AI and Large Language Models: A Concise Survey (2023)



Motivation: Scope of Pretraining

Some back-of-the-envelope math:

70B parameter LLM

x 10T tokens of training data
x 3 (1 forward pass, 2 backward pass)

= 2.1 * 1024 FLOPs

213.3 GPU-years!



Motivation: Scope of Inference

Some more back-of-the-envelope math:

70B parameter LLM

x 16-bit precision
= 140 GB streaming through device cache

Vocab size 128K

Write ~2 bytes by reading 140GB!



Motivation

Nasty synergies between pretraining and inference costs:

• Synthetic data

• Reinforcement Learning from Human Feedback (RLHF)

• Policy Optimization (PPO, DPO, GRPO, etc)

• Multiple generations required for the last two!



Takeaways

• This is a talk about building platforms and codebases

• LLM optimization: multifaceted and open-ended
• Parallel pipelines run at the speed of the slowest component
• Juggling many bottlenecks and many constraints

• No one-size-fits-all solutions!

• 80/20 rule: a long tail of possible bottlenecks

• Breadth over depth



Takeaways

1. Familiarity with general concepts and possible pitfalls

2.  Some useful tools

3. Comfortably think about, discuss, and operate LLMs at scale

4. The right mindset / perspective for approaching the problem



Who am I?

• Researcher at IBM

• 3 years working on LLM training

• PhD in AI and CV

• Focus on ML under constraints

• Fractal artist, jewelry designer



Who am I?

Our project at IBM:
an open-source, cloud-native platform for 
foundation model training, fine-tuning, and hosting

IBM Foundation 
Model Stack

IBM Pretraining
Repo (fms-fsdp)



Contents

• Storytelling – what it takes to optimize LLMs at scale

• Know where to start, if you want to do the same

• Background:
• User-level basic familiarity with PyTorch
• Familiarity with transformer architecture (attention heads, vocab layers, etc)
• Familiarity with basic training loop (forward/backward passes, causal LM)
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PART 2: The Basics of 
LLM PreTraining at Scale
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Revisiting PyTorch: Tensor Basics

PyTorch is a math engine that automatically computes gradients

• Atomic object: tensor

• Linear memory register mapped to higher dimensional grids

• Many operations supported for tensors
• Algebra: add, subtract, multiply, exponent, log, etc.
• Matrix math: matmul, triu, diagonal embed, transpose, flip, etc.
• Data ops: reshape, typecast, transfer to cpu/gpu, slice, concat, broadcast, etc.

Scalar     Vector          Matrix                Tensor

Tensors/cubes

Matrices/planes

Vectors/rows

Memory
addresses



Revisiting PyTorch: Tensor Basics



Revisiting PyTorch: AutoGrad Basics

• (Most) supported ops implement a “backward” function

• Given inputs, outputs*, and gradient w.r.t. outputs, 
calculate gradient w.r.t. inputs

𝑊𝑋 = 𝑌, 𝐿 = 𝑓 𝑌 ,
𝑑𝑊

𝑑𝐿
= 𝑋(

𝑑𝑌

𝑑𝐿
)𝑇,

𝑑𝑋

𝑑𝐿
= 𝑊𝑇

𝑑𝑌

𝑑𝐿

• Composed ops dynamically 
create a computation graph

• Graph computes gradients 
via composed backward calls



Revisiting PyTorch: AutoGrad Basics

• (Most) supported ops implement a “backward” function

• Given inputs, outputs*, and gradient w.r.t. outputs, 
calculate gradient w.r.t. inputs

𝐴𝐵 = 𝐶, 𝐿 = 𝑓 𝐶 ,
𝑑𝐴

𝑑𝐿
= 𝐵(

𝑑𝐶

𝑑𝐿
)𝑇,

𝑑𝐵

𝑑𝐿
= 𝐴𝑇

𝑑𝐶

𝑑𝐿

• Composed ops dynamically 
create a computation graph

• Graph computes gradients 
via composed backward calls

Source: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/



Revisiting PyTorch: Modules and Networks

• The other “atomic” object: modules

• Contain parameters (persistent tensors)

• Implement a forward function with tensor inputs/outputs

• Implicit backward function stores gradients for parameters

• Essentially wraps function
compositions into black boxes

• Optimizers use stored gradient 
to update parameters

• Blocks are composed into
layers and networks

Source: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/



Revisiting PyTorch: Hooks

• Hooks: backend functions triggering before/after forward/backward

• PyTorch implements distributed training through hooks
• Coordination, synchronization, sharding, etc.

• From the programmer’s perspective, it’s a model wrapper
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Data Parallel

Problem: you have a model on 1 GPU, 3 unused GPUs, and you need to 
do a forward/backward pass on a batch of data. The model stores too 
many inputs to fit on 1 GPU. What do you do?

Naïve solution: split batch into 4, 
run ¼ the data on each GPU, and 
consolidate (sum) gradients back 
to master GPU afterwards.

Source: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/



Data Parallel

Problems:

1. Several devices’ worth of traffic is
all going through 1 GPU

2. Master process is handling multiple
workers, but has to deal with GIL,
so parallelism is limited

GPU 0 GPU 0

GPU 0 GPU 0



Distributed Data Parallel

• Replicate model across 
all ranks
• Assume model is relatively 

small (<30B params)

• All-reduce gradients across 
all ranks

• Identical gradients ensure 
that model replicas 
update identically

• No extra communication
overhead (!)

Source: https://docs.pytorch.org/tutorials/beginner/ddp_series_theory.html



Distributed Data Parallel

Source: https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/
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Distributed Data Parallel

Source: https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/



Distributed Data Parallel

• DP overhead:
𝑋 model size
× (𝑅 − 1) ranks
×  2 (model forward + gradient backward)
= 2𝑋(𝑅 − 1) total

• DDP overhead:
𝑋/𝑅 packet size
× (𝑅 − 1) steps
×  2 (sum step + propagate step)
×  𝑅 ranks
= 2𝑋(𝑅 − 1) total



Distributed Data Parallel

Source: Sparse Allreduce: Efficient Scalable Communication for Power-Law Data (2013)



Fully Sharded Data Parallel

• DDP assumes your entire model fits on each GPU  𝑥

• (and the gradient)       +𝑥

• (and the optimizer)       +2𝑥

• Limit for an A100 is
~30B parameters

• We already split up the 
gradient for Ring-AllReduce, 
so do the model too!

Source: https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce/



Fully Sharded Data Parallel

• DDP assumes your entire model fits on each GPU  𝑥

• (and the gradient)       +𝑥

• (and the optimizer)       +2𝑥

• Limit for an A100 is
~30B parameters

• We already split up the 
gradient for Ring-AllReduce, 
so do the model too!
(and the optimizer)

• A.K.A. “Zero”-DP

Source: ZeRO: Memory Optimizations Toward Training Trillion Parameter Models (2019)



Fully Sharded Data Parallel

Every rank holds 1/n of each layer, and layers/gradients are gathered 
and materialized on demand



Fully Sharded Data Parallel

• 50% total increase in communication traffic over DDP (via Ring)

• MUCH more frequent communication of smaller packets
• Tighter synchronization of devices
• Latency over throughput

• Can overlap (most) communication with computation from the 
previous layer

• If training on multiple nodes, latency can become a problem



Hybrid Sharded Data Parallel

• FSDP within nodes, DDP between nodes



Hybrid Sharded Data Parallel

• A good compromise

• Memory footprint stays small
• X → X/8 is a lot of freed memory    (DDP → HSDP)
• X/8 → X/64 is only a few GB    (HSDP → FSDP)

• Improves communication costs by up to 3x in the best case

• More complex rank management (but PyTorch makes this invisible)



Sequence Parallel

• For long sequence lengths (>64k): shard sequence over devices

• For attention, stream keys/values
in chunks through devices 
(e.g. ring-allreduce)

• Can still overlap comms
and compute

Source: Sequence Parallelism: Long Sequence Training from System Perspective (2021)



Model Parallel

Pass around the inputs, not the model

• Not actually that big a difference

• Activations and model weights scale together

Model weights:

4096 (input dim)

×  4096 (output dim)

×  2 (attn + mlp layer)

×  [4,8] (inner expansion)

Activations:

4096 (input dim)

×  4096 (sequence length)

×  [64,512] (batch size)

No more overlapping comms and compute!



Tensor Parallel

Row-wise: every row (and row group) of matmul is independent

W

Xx

= Y

W1

Xx

=

Y1

W2

Xx

Y2



Tensor Parallel

Column-wise: compute partial sums and reduce later

W

X

x

= Y

W1 X1
x

=

Y1

W2 X2
x Y2

+



Tensor Parallel

Transformer layers project
outward, perform some
element-wise or group-wise
transformation, then
project back…

…which is perfect for row-wise
then column-wise TP

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism (2019)



Expert Parallel

• Blow up MLP width by ~20x

• Partition into heads/experts

• Route tokens to top-k experts 
(on different devices)

• Manually balance 
expert/device loads

Source: Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer  (2017)



Expert Parallel

Model weights:

4096 (input dim)

×  2048 (expert dim)

 ×  256 (n_experts)

 ×  2 (in + out proj)

 = 4𝐵 (weights)

Activations:

4096 (input dim)

×  4096 (sequence length)

×  [64, 512] (batch size)

 ÷ (
256

4
) (n_experts / top_k)

 =  [16𝑀, 134𝑀] (activations)



Pipeline Parallel

• Parallelize over depth: shard layers over devices

• Communications schedule VERY non-homogenous

Source: Device Placement Optimization with Reinforcement Learning (2017)



Pipeline Parallel

Naïve implementation is very inefficient

𝑊𝑋 = 𝑌, 𝐿 = 𝑓 𝑌 ,
𝑑𝑊

𝑑𝐿
= 𝑋(

𝑑𝑌

𝑑𝐿
)𝑇,

𝑑𝑋

𝑑𝐿
= 𝑊𝑇

𝑑𝑌

𝑑𝐿

Source: https://www.cs.cmu.edu/~15418/lectures/25-parallel_deep_learning_model_pipeline_parallel.pdf 



Pipeline Parallel

Aggregating mini-batches shrinks, but doesn’t eliminate, bubbles

Source: https://www.cs.cmu.edu/~15418/lectures/25-parallel_deep_learning_model_pipeline_parallel.pdf 



Pipeline Parallel

Lots of work on optimizing schedules

Source: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism (2019)



Pipeline Parallel

Lots of work on optimizing schedules

Source: DeepSeek V3 Technical Report (2025)



N-Dimensional Parallelism

• Data parallel (DDP, HSDP/FSDP, SP)

• Model parallel (TP/EP, PP)

• A safe bet – avoid scaling any one axis too far

• But good luck debugging it!

Source: https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/scaling/JAX/tensor_parallel_simple.html 
Source: The Road to El Dorado (2000)
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Handling Data at Scale

>2TB datasets require careful handling…
…even before multiple-device parallelism gets involved

• Data parallel:
• Sharding/partitioning 

(probably dynamic!)
• Fractional file ownership?
• How to handle shuffling?

• Tensor parallel:
• Synchronized retrieval 

across devices
• Shared-memory storage of 

several TB

• Sequence parallel:
• Partitioning AND synchronization

• Pipeline parallel:
• Only particular devices 

(top/bottom) need data
• Single-device storage of

several TB

• N-dim parallel:
• Have mercy



Handling Data at Scale

Source: https://docs.mosaicml.com/projects/streaming/en/stable/getting_started/main_concepts.html
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Handling Data at Scale

Source: https://docs.mosaicml.com/projects/streaming/en/stable/getting_started/main_concepts.html



Handling Data at Scale

• A whole separate problem behind-the-scenes

• General solution: mounted cloud storage folder

• A single master process is too slow

• Gets much worse for image data

• ( We’ll revisit this in session 2 )
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PyTorch’s Approach

• Every device runs the same training script

• Model wrapper uses hooks to handle distributed compute

• Primarily data-parallel (FSDP good enough for most cases)

• TorchRun: auto-handling of necessary env vars



PyTorch’s Approach

• Torchrun reference: https://docs.pytorch.org/docs/stable/elastic/run.html

• Torch.distributed and backend info: 
https://docs.pytorch.org/docs/stable/distributed.html

• FSDP (and caveats): 
https://docs.pytorch.org/docs/2.7/fsdp.html

• Getting started with FSDP: 
https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

• FMS-FSDP (our codebase):
https://github.com/foundation-model-stack/fms-fsdp 

https://tinyurl.com/davis-sigm25

https://docs.pytorch.org/docs/stable/elastic/run.html
https://docs.pytorch.org/docs/stable/distributed.html
https://docs.pytorch.org/docs/2.7/fsdp.html
https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp


PART 3: Building an Optimized LLM 
Pretraining Platform



The Secret to Optimized Pretraining

What kind of work have you guys done?

XXX is sending us extra bill for extra air

conditioning… the work you're doing is

seriously heating up the GPUs ?

— ETE Team

(after constant 70°C+ and constant peak power usage for a couple months)

Source: Kung Fu Panda (2008)



The Secret to Optimized Pretraining

Last year, fms-fsdp broke the record 
(to our knowledge) for highest throughput 
open-source LLM pretraining platform. How?

• HSDP

• Compile

• Activation checkpointing

• Mixed precision

• Custom dataloader

None of these were particularly unique or novel!



The Secret to Optimized Pretraining

Last year, fms-fsdp broke the record 
(to our knowledge) for highest throughput 
open-source LLM pretraining platform. How?

• HSDP

• Compile

• Activation checkpointing

• Mixed precision

• Custom dataloader

None of these were particularly unique or novel!

Source: Kung Fu Panda (2008)



The Secret to Optimized Pretraining

Looking for the secret is counterproductive

because

You don’t really take a scaled-up platform and optimize it

but instead

Optimize a small platform, then scale it up

which is

A fundamentally multidimensional problem



Scaling: Number of Model Parameters

(y-axis not to scale)

110M

70B



Scaling: Number of GPUs

(y-axis not to scale)

2

768



Scaling: Amount of Data

(y-axis not to scale)

200MB

13TB



Scaling: Sequence Length

(y-axis not to scale)

512

512K



Scaling: Supported Architectures

(y-axis not to scale)



Scaling: Parallelization Schemes

(y-axis not to scale)



A 3D View of Distributed Training

Design space defined along three axes:

• Compute
• Massive datasets
• Architecture design (e.g. Transformer parallelism)
• Parallelization strategies (DDP / TP / PP / SP / …)

• GPU communication overhead
• Multi-node clusters
• Infiniband, Ethernet, RoCE, …

• GPU memory pressure
• Model size, sequence length, batch size
• bf16 Llama-33B fits in 80GB “reasonably”
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A 3D View of Distributed Training

Design space defined along three axes:

• Compute
• Massive datasets
• Architecture design (e.g. Transformer parallelism)
• Parallelization strategies (DDP / TP / PP / SP / …)

• GPU communication overhead
• Multi-node clusters
• Infiniband, Ethernet, RoCE, …

• GPU memory pressure
• Model size, sequence length, batch size
• bf16 Llama-33B fits in 80GB “reasonably”

Source: https://github.com/cedrickchee/llama/blob/main/chattyllama/hardware.md#memory-requirements-for-each-model-size



A 3D Design Space

We worked with PyTorch to establish and
scale operating points in this design space

• DDP (Distributed Data Parallel)
• Mature baseline
• Replicate model, sync gradients
• High memory/compute, low comm
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A 3D Design Space

We worked with PyTorch to establish and
scale operating points in this design space

• DDP (Distributed Data Parallel)

• FSDP (Fully Sharded Data Parallel)

• HSDP (Hybrid Sharded Data Parallel)
• At the time, in beta
• Split model within node, duplicate across
• Trade memory pressure for less comm



A 3D Design Space

We worked with PyTorch to establish and
scale operating points in this design space

• DDP (Distributed Data Parallel)

• FSDP (Fully Sharded Data Parallel)

• HSDP (Hybrid Sharded Data Parallel)

• Tensor and Sequence Parallel when
required (>30B params, >32k tokens)

Great! So are we ready to train 70B models?
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• FSDP/HSDP require tight 

synchronization of multiple 
moving parts

• Inner validation loop caused hangs
and memory fragmentation



Stability Over Time
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• FSDP/HSDP require tight 

synchronization of multiple 
moving parts

• Inner validation loop caused hangs
and memory fragmentation

Fix: remove/externalize validation and other utilities
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• Non-homogeneous workloads

• Checkpoint increasing memory
• Fluctuations in reserved vs

allocated cuda memory
• Across devices and when

saving checkpoints

Fix: work with PyTorch to identify and expose the 
environment variable causing memory fragmentation
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• Variable prompt length: 
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Stability Over Time

• Non-homogeneous workloads

• Checkpoint increasing memory

• Prefix Language Modeling
• PLM: from beginning of sequence,

predict the rest
• Encoder-Decoder model
• Variable prompt length: 

RAPID desynchronization

Fix: combine mirrored sequences and masks
to keep tensor dimensions constant



Stability Over Time

• Non-homogeneous workloads

• Checkpoint increasing memory

• Prefix Language Modeling

• FSDP is out of beta and much more stable now, but the point stands

Great! So now are we ready to train 70B models?



A Long Tail of Practical Challenges

• Distributed model checkpointing
• 7B checkpoint is ~81GB
• Streaming that one file to cloud takes an hour!

• 12hr interval: 8% slowdown
• 8hr interval: 13% slowdown

• 6hr interval: 17% slowdown
• 4hr interval: 25% slowdown

• … if you can write these at all

Source: https://pytorch.org/blog/performant-distributed-checkpointing/



A Long Tail of Practical Challenges

• Distributed model checkpointing
• 7B checkpoint is ~81GB
• Streaming that one file to cloud takes an hour!

• 12hr interval: 8% slowdown
• 8hr interval: 13% slowdown

• 6hr interval: 17% slowdown
• 4hr interval: 25% slowdown

• … if you can write these at all

• Fix: work with PyTorch on 
sharded checkpointing

• Every worker writes 1/n of the checkpoint
• Tweaks for cloud-based storage (eventual consistency)

• A major release feature for PyTorch 2.1

Source: https://pytorch.org/blog/performant-distributed-checkpointing/



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading
• Training is < 1 epoch: mid-epoch recovery necessary
• Stateful
• Distributed
• Rescalable
• Subdataset re-weighting
• Modular/extensible



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading

• Activation checkpointing
• Recompute activations in backward pass

(instead of storing)
• Sophisticated fine-grained policies
• Trade compute for memory
• If comm << comp, you shouldn’t use this!

(use gradient accumulation instead)



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading

• Activation checkpointing

• CPU memory constraints
• Each cpu owns 1/n of the full dataset

(will this fit in RAM?)
• Streaming data loaders need extra:

• File metadata for sharding

• File ownership logic to minimize pulls
• Shuffling and mixing steps



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading

• Activation checkpointing

• CPU memory constraints

• CPU latency
• Many sequential, unfused CUDA calls: gpu/cpu sync
• Different hardward → up to 2x forward pass speed



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading

• Activation checkpointing

• CPU memory constraints

• CPU latency

• Document size
• Long documents with > 840M characters
• Documents with length zero



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading

• Activation checkpointing

• CPU memory constraints

• CPU latency

• Document size

• Batch size limits
• More gpus → larger batches → less stochasticity → lower data efficiency
• Above ~4M tokens, more gpus slows convergence!



A Long Tail of Practical Challenges

Source: https://en.wikipedia.org/wiki/Mount_Everest#/media/File:Mount_Everest_as_seen_from_Drukair2_PLW_edit_Cropped.jpg
Source: https://en.wikipedia.org/wiki/Half_Dome#/media/File:Half_Dome10.jpg

• Superimpose Earth’s mountains

• What location has the highest 
average elevation?
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Source: https://en.wikipedia.org/wiki/Half_Dome#/media/File:Half_Dome10.jpg
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average elevation?



A Long Tail of Practical Challenges

Source: https://en.wikipedia.org/wiki/Mount_Everest#/media/File:Mount_Everest_as_seen_from_Drukair2_PLW_edit_Cropped.jpg
Source: https://en.wikipedia.org/wiki/Half_Dome#/media/File:Half_Dome10.jpg

• Superimpose Earth’s mountains

• What location has the highest 
average elevation?

• You have no maps, and visibility 
is poor

• You can:
• Look around
• Walk for a bit
• Teleport to the same location on a 

different mountain



A Long Tail of Practical Challenges

Source: Ceausu Cristian, https://www.facebook.com/photo.php?fbid=990341093093506
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A Long Tail of Practical Challenges

Source: Ceausu Cristian, https://www.facebook.com/photo.php?fbid=990341093093506

• Superimpose Earth’s mountains

• What location has the highest 
average elevation?

• You have no maps, and visibility 
is poor

• You can:
• Look around
• Walk for a bit
• Teleport to the same location on a 

different mountain



A Long Tail of Practical Challenges

Source: Ceausu Cristian, https://www.facebook.com/photo.php?fbid=990341093093506

Any batch containing Ronda will 
never explore to the left

but

If you wander into the gorge, you 
can climb up the other side

so

You need the freedom to wander
and

This mountain-climbing 
exercise is an exact 
description of SGD



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading

• Activation checkpointing

• CPU memory constraints

• CPU latency

• Document size

• Batch size limits
• More gpus → larger batches → less stochasticity → lower data efficiency
• Above ~4M tokens, more gpus slows convergence!
• Further increases OK if done later in training



A Long Tail of Practical Challenges

• Distributed model checkpointing

• Stateful, distributed data loading

• Activation checkpointing

• CPU memory constraints

• CPU latency

• Document size

• Batch size limits

• Data file size

• Code versioning

• Mixed precision

• LR tuning

• LR scheduling

• Model initialization schemes

• Pretraining task(s)

• Network architecture

• …



An 80/20 Rule for Distributed Training

80% of academic literature focuses on 
three main aspects of training

however

We spent only 20% of our time 
working on these three dimensions

and

80% of our time on a host of smaller
 and less-discussed challenges

so

Even with matured platforms, 
expect a similar distribution of effort
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Recap

• General concepts and intro to training at scale
• Basic design philosophy of PyTorch
• Types of parallelism

• Data
• Model

• Running PyTorch at scale

• Optimizing training at scale
• Optimization as a process of scaling up
• 3D design space
• Stability over time
• Long tail of practical implementation challenges

• Next session: a bag of optimization tricks, resolving the data question, 
some remarks on inference



Maximizing LLM Throughput in PyTorch: 
Optimized Pipelines for Modern Deep 
Learning Workloads

Davis Wertheimer
IBM Research
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Recap

• General concepts and intro to training at scale
• Basic design philosophy of PyTorch
• Types of parallelism

• Data
• Model

• Running PyTorch at scale

• Optimizing training at scale
• Optimization as a process of scaling up
• 3D design space
• Stability over time
• Long tail of practical implementation challenges
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1. INTRO
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• Activation checkpointing
• Torch.compile
• Flash attention
• Mixed precision
• GQA
• PyTorch Profiler
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Activation Checkpointing

• Recall that the backward pass requires both weights and inputs

𝑊𝑋 = 𝑌, 𝐿 = 𝑓 𝑌 ,
𝑑𝑊

𝑑𝐿
= 𝑋(

𝑑𝑌

𝑑𝐿
)𝑇,

𝑑𝑋

𝑑𝐿
= 𝑊𝑇

𝑑𝑌

𝑑𝐿
• FSDP avoids storing full weights by 

reconstructing on-demand

• Do the same thing with inputs!
• Selectivity in where/what to wrap

• VS gradient accumulation
(33% extra compute vs ~2x comms)



Torch Compile

• Re-compile and optimize the execution graph
• Remove frequent CPU/GPU syncs
• Fuse operations

• Does NOT support all ops:
• No ops depending on CPU (print, nonzero, where, tolist)
• No ops depending on data (e.g. if x>0 then…)
• No functions with variable numbers/formats of output

• Variable tensor size is supported, but re-compiles every time

• Does support custom kernels (Triton-native)



Torch Compile

• Unsupported ops cause “graph breaks”
• The more graph breaks, the worse the performance 

• Llama training pain points:
• Reimplementing RoPE (real-valued)
• Extra RoPE caching to support input-dependent scaling
• Training vs inference if/elses
• FSDP boundaries



Torch Compile

DO use torch compile…

• If your workload is already well-optimized

• If you’re compute-bottlenecked

• For inference

DO NOT use torch compile…

• If your model has complex code

• If your model does data-based indexing a lot (i.e. MoE)

• If you’re communication-bottlenecked



Flash Attention

• Optimized implementation of QKV attention by Tri Dao

• Main bottleneck of attention is reading QK’ into HBM

• Avoid materializing QK’ by computing 𝜎(QK’)V chunkwise
• Separate denominator tracking lets us do softmax cumulatively

• Replaces QK’ with K and V (much smaller)

Source: https://pytorch.org/blog/flash-decoding/



Flash Attention

• A separate implementation for inference (“Flash Decoding”)

• On-device sequence parallel
• Again, extra denominator tracking for the reduction over softmax

Source: https://pytorch.org/blog/flash-decoding/



Flash Attention

• Always appropriate, but gains don’t always translate

• Attention layer is at least ~1/3 of model computation (best-case)

Source: FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness (2022)



Mixed Precision

• Lower precision runs faster, but isn’t as stable

• Some rules of thumb:
• Master weights and gradients in fp32 (FSDP helps)
• Activations and ephemeral weights in bf16
• Matmuls can do fp8, but should accumulate in higher precision
• All division (softmax, layernorm) in fp32

Source: DeepSeek-V3 Technical Report (2024)



Mixed Precision

• For FSDP, policies allow for fine-grained control

• Other options: 
• torchao (https://pytorch.org/blog/pytorch-native-architecture-optimization/)
• AMP (https://docs.pytorch.org/docs/stable/notes/amp_examples.html) 

https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://pytorch.org/blog/pytorch-native-architecture-optimization/
https://docs.pytorch.org/docs/stable/notes/amp_examples.html


Group-Query Attention

• KV cache is data-rich – why only query it once?

• Shrink number of KV heads, group Q heads

• Saves massive inference overhead
• Memory limits
• Overhead from reading KV cache into HBM (i.e. Flash)



Demo: 
Bag of Tricks

https://tinyurl.com/davis-sigm25

• Activation Checkpointing
• Torch Compile
• Flash Attention
• Mixed Precision
• GQA
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Torch Profiler

• A (too) powerful 
diagnosis tool

• A context wrapper that 
tracks computation 

• Exports huge JSON
• For Chrome users:

chrome://tracing
• Otherwise: 

ui.perfetto.dev

• Visually examine 
runtimes



Demo: 
Profiling the 

Bag of Tricks

https://tinyurl.com/davis-sigm25

ui.perfetto.dev

• Flash Attention
• Mixed Precision
• Torch Compile
• Activation Checkpointing
• GQA



PART 5: Data at Scale
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Data at Scale

1. Stateful and checkpointable, mid-epoch resumption

2. Auto-rescale checkpoints to changing workload/GPU allocations

3. Data streaming with efficient shuffling: queue TB of data quickly

4. Efficient and asynchronous, no peer-to-peer

5. Dynamic data mixing and tokenization (minimize preprocessing)

6. PyTorch-native, modular, extensible

(MosaicML has the first 4, but not 5 or 6)



Data at Scale

So we built it ourselves!
Proven:

• Hundreds of training jobs

• Observed months of continuous operation

• Over 90,000 tokens/gpu/sec while being “async”

So what?

• Training pipelines move at the speed of the slowest bottleneck

• FSDP+compile+fp8+flash+etc. demands a good data loader!



Our Dataloader Journey

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Mid-Epoch Resumption   Mar 2023

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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• At the time, no distributed dataloader 
was available with mid-epoch resumption

• PyTorch does support non-stateful 
distributed loading via DistributedSampler

• Baby steps: add n_seen argument
to existing DistributedSampler

Mid-Epoch Resumption   Mar 2023



Composable Iterable Datasets  June 2023

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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• Multi-stage data transformation requires 
multiple loaders

• Indexing doesn’t work when 
items in ≠ items out
(e.g. packing/slicing documents)

• Extend PyTorch’s IterableDataset 
to create wrappers with 
recursive iter()

• Then extend with recursive 
state_dict() / load_state_dict()

Composable Iterable Datasets  June 2023

MLM/CLM

Shuffle

Pack/slice

Data mixing
Base

Reader



Rescalability Over GPUs   July 2023

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Rescalability Over GPUs   July 2023

• Auto-reshard handling for wrappers:
• State flags: RNG states, token counts, scalars (discard)
• Reshard flags: lists, buffers (re-partition)
• Easily extensible – just specify states/reshards

• Rescalability layer: a list of 
subloaders / logical shards
• Everything before this layer stays non-elastic
• Everything above this layer auto-reshards

• No repartitioning, still no revisiting seen data



Data Streaming     Aug 2023

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Data Streaming     Aug 2023

• Data streaming requires 
dedicated shuffling

• Minimize cache size 
when possible

• Within-file: full shuffle

• Across-file: buffer shuffle
• Given buffer:
• Choose random index
• Overwrite with new value
• Yield old value

Avg distance between 
consecutive items:

500

~100

~300



Data Mixing      Sep 2023

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Stateless Shuffling    April 2024

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Stateless Shuffling    April 2024

CPU bottlenecks matter!



Stateless Shuffling    April 2024

• LCG (Linear Congruential Generator)
(adapted from Knuth, 1997)

• Random walk over ANY size

• State is three scalars!
(seed, size, last index)

• >100Gb overhead to ZERO



Asynchronous Loading   May 2024

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device

Mid-epoch resumption

(3/ 23)

Dynamic 

mixing

(9/ 23)

Streaming

(8/ 23)

Rescale-

able

(7/ 23)

LCG 

shuffling

(4/ 24)

Asynchronous

(5/ 24)

FSDP test runs

(12/ 23 – 2/ 24)

20240.9Tb 4.7Tb 8.5Tb 13.1Tb 15+7Tb

Compose-

able

(6/ 23)

Tokenize

(7/ 24)

Multi-

process

(8/ 24)



Asynchronous Loading   May 2024

Training Data Training Data Training Data

Training

Data

Training

Data

Training

Data

Single-process (accessible state)

Asynchronous (state inaccessible, handled internally)

• Use existing num_workers arg in torch DataLoader

• Auto-handle checkpoints via another iterable wrapper CheckpointDataset



On-the-Fly Tokenization   July 2024

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Multi-Process Support   Aug 2024

Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device
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Data Mixing      Aug 2024

• Iterators and sub-iterators: a tree structured loader
• Multiple subdatasets with multiple shards per dataset



More Recently
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Mid-epoch resumption Resume training runs with uninterrupted, unchanged behavior

Composability Support multi-stage processing, with state at each level

Rescalability Scale to different numbers of GPUs without changing data order

Data streaming Pull files and documents on-demand with local shuffling

Dynamic data mixing Just-in-time data sampling, token percentages track targets constantly

Stateless shuffling Custom LCG random walk enables local shuffling w/o memory overhead

Asynchronicity Dataloading runs in separate process, auto-checkpoints, does not block

On-the-fly tokenization Support for multiple file types and degrees of preprocessing

Multi-processing Defer setup to allow several parallel workers per device



More Recently

• Open PRs contributing to TorchTitan and TorchData

• Adding new capabilities and ironing out edge cases

• Rely on this as we upgrade to FSDP2, FP8 training, new hardware, etc.
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Takeaway

Distributed data loading is just as complex 
and multidimensional as distributed training!

A recent 
horror story: 
an interaction 
between long 
documents 
and small files



Demo: 
Setting Up a
Distributed 
Dataloader

https://tinyurl.com/davis-sigm25



PART 6: Accelerating Inference



Contents

1. INTRO

2. BASICS OF TRAINING AT SCALE

3. OPTIMIZING TRAINING AT SCALE

4. BAG OF TRICKS

5. DATA AT SCALE

6. ACCELERATING INFERENCE
• The nature of inference workloads
• Bag of tricks
• Speculative decoding



The Nature of Inference Workloads

LLM pretraining is homogeneous, inference is not!

• Multi-stage:
1. Encode the 

prompt (prefill)
2. Generate token 

by token (decode)

• Bottlenecks:
1. Memory 

(K/V cache)
2. Device-inefficiency
3. (scale) x        ✓



The Nature of Inference Workloads

A familiar 80/20 rule:

• 80% of discussion / papers focus on model optimization

• 80% of work is in dealing with scale and heterogeneity

• New solutions are less algorithms, and more names 
for general concepts

1. Dynamic vs continuous batching
2. Chunked vs disaggregated prefill
3. Prefix caching / paged attention



Dynamic vs Continuous Batching

Fix device-inefficiency by batching

• “Inference server” to schedule and coordinate model calls

• But how to batch heterogeneous workloads?

Source: https://www.anyscale.com/blog/continuous-batching-llm-inference

“Dynamic” batching Continuous batching



Chunked vs Disaggregated Prefill

Continuous batching addresses request heterogeneity, 
but not stage heterogeneity

• Compute prefill chunk-by-chunk

• Compute prefill in an entirely separate server

Source: https://hao-ai-lab.github.io/blogs/distserve/



Prefix Caching / Paged Attention

Re-use K/V cache entries as much as possible

• Branching inputs (beam search, templates)

• One level of indirection for KV cache addresses

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention (2023)



Prefix Caching / Paged Attention

Re-use K/V cache entries as much as possible

• Branching inputs (beam search, templates)

• One level of indirection for KV cache addresses

• Addresses memory and device-inefficiency

Source: Efficient Memory Management for Large Language Model Serving with PagedAttention (2023)



A Similar Bag of Tricks

• Parallelism (TP / PP / DP / SP / EP)

• Mixed precision (quantization)

• Torch compile

• GQA

• Speculative decoding
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Speculative Decoding

• Baseline: predict 1 token at a time
• Memory bottleneck, compute underutilized
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Speculative Decoding

• Baseline: predict 1 token at a time
• Memory bottleneck, compute underutilized

• Speculation: use a small model to guess n tokens ahead
• Forward pass reveals how many match the true model
• Unbroken chain of correct guesses → free tokens
• Dump any incorrect guesses, repeat

• In practice: multiple candidate sequences 
per prompt

A    B    C    D    E    F    G   X

F    G   H    Y



Speculative Inference Loop

Perform forward pass on prompt, fill kv cache

While n_tokens < requested:

• Fetch latest token and embedding
• Speculator generates k candidate suffix sequences

• Base model scores candidates
• Correct tokens from best candidate are added to result

• K/V for ONLY those tokens and candidate are added to kv-cache

Try it yourself!

https://tinyurl.com/davis-sigm25



Speculator / Draft Model

Some concerns and research questions:

• Speedup depends on speculator accuracy

• Must balance speculator overhead vs power

• Must also balance batch size (candidates) vs recall

So we tried it!



Speculator / Draft Model

Either a smaller LLM, or a bespoke model extension

• Small as possible

• Recurrent architecture, tree of outputs (candidates)

• Bespoke extensions:
• Latest embedding input

• Without it, just an n-gram model
• No understanding of context

• Sampled token input
• Without it, conditioning on expectation over multiple tokens

• Lots of junk candidates



Two-Stage Training Pipeline

Stage 1: align to text
• Standard CLM task
• 32 gpus, 4k seq len, 1M bsize
• 15k steps / 16B tokens
• 1.1/1.5 days for 7/13B
• 1.95 – 2.49x logical speedup

Stage 2: align to base model
• Generate targets from base model
• 32 gpus, 64+256 seq len, 1M bsize
• 6k steps / 6B tokens
• 0.9/1.5 days for 7/13B
• 2.18 – 2.72x logical speedup



Results

• 2-3x improvement in wall-clock latency

• On top of already-optimized inference (2x other papers)

Source: https://pytorch.org/blog/hitchhikers-guide-speculative-decoding/



Results

• 2-3x improvement in wall-clock latency

• On top of already-optimized inference (2x other papers)

• 44k downloads on our Llama3-8B accelerator



Results



Speculative Decoding: Takeaways

• Leverage available parallelism bandwidth by turning generation into 
parallel verification

• Effectiveness decreases as computational load / efficiency increases

• Bespoke accelerators work better in lab conditions

• Separate LLM speculators are more robust



Conclusion



Conclusion

1. Optimization as a practical problem vs an academic problem
• Multidimensional and open-ended
• Long tails of practical challenges

• Training: stability, data handling
• Inference: batching, scheduling, heterogeneity

• No universal good solutions!

2. Plenty of useful tools
• Parallelism, mixed precision, compile, GQA
• Training: activation checkpointing, torch profiler
• Inference: prefix caching, speculative decoding

3. The right perspective to reconcile and leverage points 1 and 2



Thank you!

https://tinyurl.com/davis-sigm25
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